A biomechanical model for fluidization of cells under dynamic strain.

نویسندگان

  • Tenghu Wu
  • James J Feng
چکیده

Recent experiments have investigated the response of smooth muscle cells to transient stretch-compress (SC) and compress-stretch (CS) maneuvers. The results indicate that the transient SC maneuver causes a sudden fluidization of the cell while the CS maneuver does not. To understand this asymmetric behavior, we have built a biomechanical model to probe the response of stress fibers to the two maneuvers. The model couples the cross-bridge cycle of myosin motors with a viscoelastic Kelvin-Voigt element that represents the stress fiber. Simulation results point to the sensitivity of the myosin detachment rate to tension as the cause for the asymmetric response of the stress fiber to the CS and SC maneuvers. For the SC maneuver, the initial stretch increases the tension in the stress fiber and suppresses myosin detachment. The subsequent compression then causes a large proportion of the myosin population to disengage rapidly from actin filaments. This leads to the disassembly of the stress fibers and the observed fluidization. In contrast, the CS maneuver only produces a mild loss of myosin motors and no fluidization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Five Parameter Viscoelastic Model Under Dynamic Loading

The purpose of this paper is to analysis the viscoelastic models under dynamic loading. A five-parameter model is chosen for study exhibits elastic, viscous, and retarded elastic response to shearing stress. The viscoelastic specimen is chosen which closely approximates the actual behavior of a polymer. The module of elasticity and viscosity coefficients are assumed to be space dependent i.e. f...

متن کامل

Investigating the Creep Properties of PET-Modified Asphalt Concrete

This study has investigated the creep properties of asphaltic concrete modified with different dosages of waste polyethylene terephthalate (PET) in two different ranges of size. Uniaxial dynamic creep test at 40°C was conducted on the cylindrical specimens of the mixtures. The load was applied in two different frequencies of 0.5 and 5Hz. Creep test results showed that the accumulated strain und...

متن کامل

Dynamic Analysis of the Biomechanical Model of Head Load Impact Using Differential Transform Method

The dynamic analysis of the biomechanical model of the head load impact using the Differential Transform Method is presented in this paper. In many parts of the world, the problem of traumatic brain injuries (TBI) has led to neurodegenerative dementing disorders and diseases as a result of head load impact from sporting activities, accidents involving the head, etc. have serious effects on huma...

متن کامل

Histopathologic and comparisons of the properties of skin,sutured withb and Iranian and a foreign brand nylon suture in rat

  This study was designed to elucidate the possible difference between supa and ethicon.nylon in suturing rat skin.75 female spragne-dawley albino rats with mean weight 250 g were used and randomly divided into three groups of 30,30 and 15 rats.in 60 rats anesthesea was induced by ketamin and xylazin.followed by surgical preparation , a 5 cm abdominal skin incision was made and sutured by simp...

متن کامل

Modeling of Compression Curves of Flexible Polyurethane Foam with Variable Density, Chemical Formulations and Strain Rates

Flexible Polyurethane (PU) foam samples with different densities and chemical formulations were tested in quasi-static stress-strain compression tests. The compression tests were performed using the Lloyd LR5K Plus instrument at fixed compression strain rate of 0.033 s-1 and samples were compressed up to 70% compression strains. All foam samples were tested in the foam rise direction and their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 108 1  شماره 

صفحات  -

تاریخ انتشار 2015